Biomass Thermal Energy Metering Principals

A Few Other Thoughts

- Principals generally applicable regardless of system size or whether steam/hot water
- Small-scale systems
 - More likely to use hot water as working fluid
 - Less instrumentation needed for operation
 - Less likely to be CHP
- Large-scale systems
 - More likely to use steam for working fluid
 - More likely to include power generation
 - Industrial process heat

More instrumentation-ideally

Metering Concept

Thermal Metering – Net Useful Energy

- Net Useful biomass energy delivered to distribution
 - Gross renewable thermal energy production continuously metered at the inlet of boiler and prior to distribution
 - Adjustments applied to determine net useful thermal energy
- General Equation for Net Useful Thermal Energy (U_{th})

 - Q_{RPS} = thermal energy used to produce RPS compensated electricity

 Q_{wh} = waste heat recovered from exhaust gas

Gross Thermal Production

- Continuous Metering: Boiler input and output
- Temperature, flow and pressure sensors installed after feedwater pumps and at inflow to main steam header
- Thermal Generation formula

Adjustment for Parasitic Loads

- Parasitic Thermal Loads
 - Feedwater heaters, deaerators, plant heating/cooling, etc.
- Not all loads will require adjustments, only those that may result in overstatement of useful thermal energy
 - Those outside of metering boundaries, or cross metering boundaries
- Adjustment process
 - Identify relevant parasitic thermal loads;
 - $\,\circ\,$ Use plant energy audit techniques to quantify these loads ($P_{\text{load}})$
- Calculate parasitic load coefficient as percentage of gross thermal output

$$Q_{par} = Q_{out} * P_{load}$$

RPS Power Deduction

- Deduction for RPS Power Generation
 - Deduction excludes thermal energy used to produce Electric RECs (avoids double counting)
- Calculation of energy extracted for electricity will depend on type of turbine.
 - Back pressure turbine
 - Extraction turbine, back pressure
 - Extraction turbine, condensing
 - Hybrids (multi-turbine)

RPS Power Deduction

- General formula
 - Q_{RPS} is the adjustment factor

CHP WITH RPS ELECTRIC - DETAIL

Waste Heat Recovery Adjustment

- Addition for Waste Heat Case by Case
 - Addition credits the recovery of useful process energy from exhaust gases
 - Assumes that waste heat is used to add value to a product that is not consumed at the plant
 - Drying lumber = OK
 - Drying wood fuel = parasitic use

Additional Considerations

- Methodology ensures that RECs created by power generation for the RPS do not overlap RECs created by thermal energy production
- Adjustment must be made if fossil boiler operated in parallel – case by case, but methodology does accommodate this

- Qadj = energy adjustment for non-renewable energy inputs
- Meter choices have a big impact and freedom for proper specification for each application must be provided. An overall accuracy adjustment factor seems appropriate to be fair to all parties.